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The signal-recognition particle (SRP) mediates the translocation
of membrane and secretory proteins across the endoplasmic
reticulum upon interaction with the SRP receptor. In trypano-
somes, the main RNA molecule is the spliced-leader (SL) RNA,
which donates the SL sequence to all messenger RNA through
trans-splicing. Here, we show that RNA interference silencing of
the SRP receptor (SRa) in Trypanosoma brucei caused the
accumulation of SRP on ribosomes and triggered silencing of SL
RNA (SLS). SLS was elicited due to the failure of the SL RNA-
specific transcription factor tSNAP42 to bind to its promoter.
SL RNA reduction, in turn, eliminated mRNA processing and
resulted in a significant reduction of all mRNA tested. SLS was
also induced under pH stress and might function as a master
regulator in trypanosomes. SLS is reminiscent of, but distinct
from, the unfolded protein response and can potentially act as
a new target for parasite eradication.
Keywords: Trypanosoma brucei; signal recognition receptor;
SL RNA; trans-splicing
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INTRODUCTION
In eukaryotes, translocation of secretory and membrane proteins
across the endoplasmic reticulum is mediated primarily by the
signal-recognition particle (SRP; Keenan et al, 2001). During
protein translocation, the signal-peptide-binding protein of the
SRP, SRP54, samples the signal peptide emerging from the
ribosome nascent chain (RNC). The resulting SRP–RNC complex
interacts with the SRP receptor SRa. Guanosine triphosphate
(GTP) binding to SRa enhances the affinity between SRP and
SR (Rapiejko & Gilmore, 1997). After signal sequence transfer
to the translocon, both SRP54 and SRa act as reciprocal

GTPase-activating proteins, resolving their association (Powers
& Walter, 1995). The RNC binds to the membrane by interactions
with the channel or Sec61 complex, and the protein is co-
translationally translocated.

Trypanosomes are ancient protozoan parasites, which have a
unique SRP that contains two RNA molecules—the 7SL RNA and
a transfer RNA-like molecule—and lacks the Alu-domain-binding
proteins (Liu et al, 2003; Lustig et al, 2005). The SRP pathway is
essential for parasite survival (Liu et al, 2002; Lustig et al, 2005).
Trypanosomes process their RNA by a unique mechanism, as all
nuclear messenger RNA undergo trans-splicing, which involves
the addition of a common spliced-leader (SL) sequence to the 50

end of the mRNA. The source of the SL is a small RNA, the SL
RNA. The SL RNA promoter is the only RNA polymerase II (pol II)
promoter characterized in trypanosomes (Gilinger & Bellofatto,
2001; Das et al, 2005). It recruits the trypanosome snRNA-
activating protein (tSNAP) complex, which contains three
subunits: tSNAP26 and tSNAP50, which are related to factors
that mediate small nuclear RNA (snRNA) transcription in metazoa,
and tSNAP42, which is trypanosome specific (Das et al, 2005).

In this study, we show that the depletion of cells from the SRP
receptor SRa elicits a new signalling pathway, leading to complete
elimination of mRNA production through inhibition of SL RNA
transcription. This novel pathway can also be induced under pH
stress and might therefore be analogous to the unfolded protein
response (UPR) that acts to protect cells from ambient stress
(Schroder & Kaufman, 2005).

RESULTS
SL RNA and mRNA production
To examine further the role of SRP in protein sorting, we knocked
down the expression of the SRP receptor SRa by RNA interference
(RNAi). The SRa gene was identified by homology searches of
the Trypanosoma brucei genome. The gene (Tb11.01.1650) is
composed of 582 amino acids, and shares 39% identity and 48%
similarity to the human protein. Silencing was carried out by using
expression of a stem–loop structure from an inducible promoter
(Wang et al, 2000). Induction of SRa silencing was lethal and cells
started dying 3 days after induction (Fig 1A). As a result of
silencing, cells became ‘fat’, as visualized by both confocal and
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scanning electron microscopy (SEM; Fig 1B). The level of SRa
mRNA was reduced on silencing (Fig 1C). Interestingly, significant
reduction of tubulin mRNA was also observed, which might
explain the ‘fat’ phenotype (Fig 1B).

To investigate further the effect of SRa silencing on mRNA
production, the level of several mRNAs was examined from cells
2–4 days after silencing (Fig 2A). In each case, the level of mRNA
was reduced. The overall reduction in the level of mRNA is not
due to total inhibition of RNA pol II-dependent transcription, as
the level of EP procyclin, which is transcribed by RNA pol I, was
similarly reduced (Fig 2A). The effect on mRNA was specific to
SRa depletion, as no such effect was observed after SRP54 RNAi
silencing. However, SRP54 depletion was efficient and its mRNA
was completely eliminated (Fig 2A). Next, we examined whether
the reduction of mRNA in SRa-depleted cells was due to changes
in mRNA stability. Cells were treated with actinomycin D, before
and after depletion, and the half-life of three mRNAs was
determined. The results (supplementary Fig S1 online) show no
effect on mRNA stability.

Inhibition of SL RNA synthesis, which is transcribed by pol II,
should eliminate mRNA production by blocking trans-splicing.
We examined next the level of SL RNA and compared it to other
small RNAs transcribed by pol I and pol III, such as 5.8S ribosomal
RNA, U6 snRNA and 7SL RNA. Significant RNA reduction was
observed only for SL RNA (Fig 2A).

To examine trans-splicing during SRa depletion directly, the
level of the Y structure intermediate was determined in steady-
state mRNA. This resulted in two principal extension products: the
Y structure and the mature capped SL RNA. The results (Fig 2B)
indicate that the level of Y structure was reduced by 78%75
compared with uninduced cells, and this corresponds to the
decrease in the level of SL RNA. This suggests that during SRa
depletion, the reduction in the Y structure is not the result of
splicing defects, but is due to a reduction in the level of SL RNA.

Next we examined, using the permeable cell system, whether
nascent SL RNA transcription is affected in the silenced cells

(Tschudi & Ullu, 1990; Ullu & Tschudi, 1990). SL RNA is the
major radiolabelled transcript in this system, but nascent
tRNA, rRNA and mRNA can also be detected. The results
(Fig 2C) indicated an 80%74 reduction in the level of newly
transcribed SL RNA. The decrease in the level of SL RNA was also
reflected by a decrease in the level of the free intron and SL exon.
This suggests that the mechanism/machinery of trans-splicing
was not abrogated, and that the reduction reflects only a
reduction in SL RNA production.

We wanted to explore further whether SRa depletion elicited
a general shut-off of RNA transcription or whether transcription
shut-off was specific to SL RNA. RNA extracted from permeable
cells—before and after depletion—was analysed by slot-blot
hybridization. We examined the level of rRNA, 7SL RNA and
mRNA—tubulin and Hsp83—transcription, and compared it with
that of the SL RNA (Fig 2D). The human gene Sirt6 was used as
a control for nonspecific hybridization. Densitometric-based
quantification of these data—based on long exposure—shows
that mRNA levels were reduced by only 15–20% (as illustrated
in Fig 2D), whereas SL RNA transcription—based on short
exposure—was reduced by 82%72 as a result of SRa depletion.
Thus, there was a specific shut-off of SL RNA transcription as
a consequence of the loss of SRa.

Changes in tSNAP complex during SRa depletion
To investigate how SL RNA transcription was specifically shut
down, we examined some specific effects, such as amount and
localization, on SL RNA transcription factors. Proteins present in
nuclear extracts, made from cells before or after SRa knockdown,
were studied by using western analysis. Figure 3A shows a
significant reduction in the level of two of the tSNAPc subunits,
tSNAP50 and tSNAP26 which most probably reflects mRNA
elimination. Indeed, a significant reduction in protein synthesis
examined by in vivo labelling was observed after SRa depletion
(see supplementary Fig S2 online). By contrast, a significant
increase in the third tSNAPc subunit, tSNAP42, was observed
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Fig 1 | Deleterious effects of signal-recognition particle receptor a silencing. (A) SRa is essential for cell growth. The growth of uninduced cells was

compared with induced cells. The number of uninduced cells (�Tet) is shown by open diamonds and that of induced cells (þTet) by filled squares.

Standard deviation from three different experiments is indicated by error bars. (B) Morphology of SRa-depleted cells. Cells uninduced (�Tet) and

after 3 days of induction (þTet) were visualized by confocal microscopy and by scanning electron microscope (insets). Scale bars, 5mm. (C) Northern

analysis of SRa messenger RNA upon silencing. RNA was prepared from induced (þTet) and uninduced (�Tet) cells. Total RNA (20mg) was

subjected to northern analysis with random-labelled probes. Double stranded RNA production was inspected using the stuffer sequence of the stem–

loop RNA (Pex). The transcripts are indicated by arrows. rRNA, ribosomal RNA; SRa, SRP receptor a; SRP, signal-recognition particle.
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(Fig 3A). The localization of tSNAP42 showed a marked change in
the subnuclear localization on silencing (Fig 3B). In uninduced
cells, tSNAP42 localized to a distinct ‘dot’, which marks the
unique site of SL RNA transcription (Dossin & Schenkman, 2005).
Following SRa silencing, tSNAP42 was not concentrated as this
dot, but was spread throughout the nucleus. tSNAP42 might be the
target to receive the signal to shut off SL RNA transcription, by
losing its ability to bind to the SL RNA promoter. Indeed, a

chromatin immunoprecipitation (ChIP) assay carried out on DNA
from cells before and after silencing, indicated that the SL RNA
transcription complex was not formed in SRa-depleted cells, as no
binding of tSNAP42 to the SL RNA promoter was observed, as in
uninduced cells. The specificity of binding to the SL RNA
promoter was controlled by a lack of binding to the rRNA
(Fig 3C). To examine whether the mRNA reduction observed in the
SRa-silenced cells was entirely correlated with SL RNA shut-off,
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the tSNAP42 expression was silenced by RNAi. The results
(supplementary Fig S3 online) show that in tSNAP42-silenced
cells, SL RNA and mRNA levels were proportionally reduced.

To control for off-target silencing of SRa, we constructed
a second stem–loop construct to a different domain of the gene.
The results (supplementary Fig S4 online) show that this silencing
has the same phenotype such as SL RNA reduction, tSNAP42
accumulation and aberrant localization. As the regulation
observed in this study affected mostly SL RNA transcription, we
termed this novel process spliced-leader RNA silencing (SLS).

Inducers of SLS
To investigate the source of the signal that elicited SLS, we
examined the status of SRP on ribosomes. Release of the SRP–RNC
complex requires GTPase activity, which in turn requires the
interaction of SRP54–SRa; therefore, it is possible that the absence
of the SRa receptor might cause the SRP–RNC complex to become
immobilized. Accordingly, SRP might become fixed onto ribo-
somes. Extracts were prepared to separate free SRP present in the

post-ribosomal supernatant (PRS) from ribosomal-bound SRP.
Figure 4A shows that during silencing, the level of ribosomal-
bound SRP, as detected by northern analysis of 7SL RNA,
increased from 22%74 in the uninduced cells to 65%73 in the
silenced cells. The quantity and quality of ribosomes in each
fraction was determined using the 5.8S rRNA probe. These results
indicate that, in the absence of the SRa receptor, SRP bound to
ribosomes is not transient and that the interaction of SRP–RNC is
stable and can withstand high-salt extraction. We examined next
the localization of these SRP–RNC complexes in the cell by in situ
hybridization with 7SL RNA. The results indicate that during
silencing, all the SRP that are normally spread in the cytoplasm
became concentrated in a defined area (Fig 4B). These data
indicate that in SLS the signal is transmitted from the SRP stalled
on the ribosomes to the nucleus to affect SL RNA transcription.

To investigate whether SLS can be induced under physiological
conditions, parasites were exposed to low pH and the level of SL
RNA was examined. The results show a significant reduction in SL
RNA (Fig 5Aa) and mRNAs (Fig 5Ab). The reduction is attributed
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to SLS, as elevation in tSNAP42 was observed (Fig 5B), indicating
that SLS is induced by the parasite in response to a relevant
physiological stress.

DISCUSSION
In this study, we describe a novel regulatory circuit that responds
to stress by the elimination of mRNA production, elicited by

shut-off of SL RNA transcription. This is an immediate and extreme
response, which leads to parasite death.

SLS was induced by a major stress to the protein translocation
machinery; this is unlikely to occur in nature but might
mimic other stresses that the parasite encounters. This indicates
that the signalling pathway leading to SLS might be induced by
different cues. At present, the signalling pathway involved
in SLS is unknown. It is also unknown whether the inability of
tSNAP42 to bind to its promoter is because it is modified directly
by SLS or if SLS affects yet another factor that does not allow
tSNAP42 binding.

SLS is activated under low pH, and at present we are
investigating the effect of various stresses on SLS induction. The
ability to transmit defects in sorting and folding of proteins to shut
off a cellular process, such as transcription observed in this study,
resembles UPR found in other eukaryotic cells. The UPR elicited
by various stresses induces upregulation of the folding capacity of
the endoplasmic reticulum and downregulation of the biosyn-
thetic load, by shutting off protein synthesis at the transcriptional
and translational levels (Schroder & Kaufman, 2005). Trypano-
somes might carry two lines of defence against stress: a UPR-like
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mechanism and SLS. These pathways might be activated,
depending on the severity of stress. Severe stress might activate
SLS to quickly eliminate these ‘sick’ parasites from the population.

It is interesting to examine whether the phenomenon described
here is specific to trypanosomes, or whether similar transcription
shut-off can be induced in metazoa on depletion of the SRP
receptor. This is the first demonstration that SL RNA expression by
SLS is a master regulator in the trypanosome cell. This discovery
opens a new path towards a therapy based on SLS pathway
activation. This could lead to stymied parasitic growth, and to
relief from the devastating diseases caused by these parasites.

METHODS
Cell growth, transfection and extract preparation. Procyclic
T. brucei strain 29-13 (Wirtz et al, 1999) were grown in
SDM-79 medium and transfected as described by Liu et al
(2002). Extracts and preparation of ribosome and post-ribosomal
supernatant have been described by Ben Shlomo et al (1999). Nuclear
extracts were prepared as described previously (Das et al, 2005).
RNA analysis. Northern analysis for mRNA has been described
by Liu et al (2002). Small RNAs were fractionated on a 10% (w/v)
polyacrylamide gel containing 7 M urea. The RNA blots were
hybridized to oligonucleotides or random primer DNA probes
as specified in the supplementary Table I online. Primer extension
was as described by Liu et al (2003).
Microscopy. Immunofluorescence was as described by Liu et al
(2002). Cell nuclei were stained with 40-6-diamidino-2-phenylin-
dole (DAPI) for 5 min. For in situ hybridization, digoxigenin-
labelled DNA probes were used as described previously (Lustig
et al, 2005). Cells were visualized using a Zeiss LSM 510 META
inverted microscope (Carl Zeiss AG 73446, Oberkochen, Germany).
SEM was carried out as described by Rothmann et al (2000).
Cell permeabilization. The procedure was similar to that
described by Tschudi & Ullu (1990). The only deviation from
the published protocol is that transcription buffer TB� 1 was used
(150 mM sucrose, 20 mM potassium, L-glutamate (Sigma, St Louis,
MO, USA), 10 mM HEPES-KOH (pH 7.9), 2.5 mM MgCl2, 1 mM
dithiotheritol, 10mg/ml leupeptin).

For slot-blot analysis of the RNA synthesized in permeable
cells, plasmid DNA or PCR products were used. Hybridization
was carried out at 55–60 1C in 60% (v/v) formamide, 2� SSC
(0.3 M sodium chloride, 0.03 M sodium citrate), 100 mg/ml salmon
sperm DNA, 0.1% (w/v) Sarcosyl, with the entire RNA fraction
extracted from permeable cells. After hybridization, filters were
washed twice in 2� SSC and 0.1% (w/v) SDS at 65 1C for 30 min.
Chromatin immunoprecipitation. ChIP was carried out as de-
scribed by Lowell & Cross (2004). Immunoprecipitated material
after cross link reversal was deproteinized and subjected to PCR
analysis using primers (see the supplementary information online).

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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